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1 Introduction 
Carbon dioxide  concentration  in  the  atmosphere is rising at  about 0.5% per  year,  almost en- 
tirely due to emissions of fossil fuel  combustion,  and  it is expected to cause  increases in surface 
temperature  measurements. All of this is completely  addressed in the  reports of the Intergov- 
ernmental  Panels  on  Climate  Change  (IPCC)  (Houghton  et  al. 1991; Houghton  and Meira  Filho 
1996). The overriding  focus of the research summarized in the  IPCC  reports is to understand 
the effects greenhouse  gas  forcing  has  had  in the  past  and  the effects it is likely to have in the 
future.  In  this  paper we do  not choose to outline  all of those issues addressed  in the  IPCC 
reports  but  instead  outline only  climate  signal  detection  and  attribution  and  the  statistical 
testing of climate  models. We lay out  the  mathematics of each keeping in  mind how occultation ‘ 

data obtained by COSMIC will apply.  A  commonly  occuring  theme will be  the  importance of 
testing  and  improving  climate  models. 

The issue of detecting  changes in the  climate  and  attributing  those changes to specific 
“forcings” is a general  one which has  most  frequently been applied to warming of Earth’s surface 
together  with  anthropogenic greenhouse gas increases. While the  “attribution” problem is highly 
relevant for public policy purposes, its scientific value is just beginning to be  put  into  context: 
detection  and  attribution tells  more about  the  quality of climate  models than  it does about 
cause  and effect in  the  climate  system. Namely, the effects of any specific climate  forcing  can 
only be hypothesized by the use of a  climate model-global climate  models  (GCMs)  being  the 
most sophisticated-which themselves give highly  inconsistent  results.  In fact,  GCMs predict 
anywhere  from  a 2 K to a  5 K increase in surface temperature  due  to a  doubling of carbon dioxide 
concentration.  Clearly,  the  models  themselves  cannot  be  satisfactory  predictors of climate 
change yet, so it is the  data  that we must rely upon to  update  the models. Hence, commonly 
it is the  climate  “sensitivity”, or the surface temperature increase  caused by a  doubling of 
COa, which is sought  out in data. Here we lay out  the  most  current versions of climate signal 
detection, how one would implement  occultation data from  COSMIC,  describe  recent  results 
in  the  literature,  and show rigorously this process is related to  the testing  and improving of 
GCMs. 

Secondly, the  common  methods of validation of GCMs as laid  out in the  IPCC reports is 
generally well-suited to mimicking the  current  climate  state  but is ill-suited to  guaranteeing 
accurate  and precise predictions of future  climate  states.  The  IPCC 1995 report opens its 
discussion of model  evaluation by stating  that  it takes the  approach of Oreskes et  al. (1994) 
which endorses the  matching of known climate  states between model and  data. Very often this 
is accomplished by adjustment of parameterizations of sub-gridscale processes such as cloud 
microphysics,  air-sea  interactions,  turbulence,  etc.  When this is done, it is difficult to know 
whether the change is physically based, especially since the changes  are  frequently  implemented 
to  guarantee overall stability of the model (see discussion on  flux adjustment in the  IPCC 
1995 report). If the physics of the  model is not  reasonable,  then  predictions of future changes 
in the  climate  state  cannot  be reasonably trusted. Leith  (1975)  pointed out  the connection 
between second-moments  in the  climate  system  and forced evolution of the  climate  system. By 
implication,  predictions of climate change by GCMs  are  more  trustworthy if second-moments 
in GCM  variables and observations  are in good  agreement. Here we outline  Leith’s note, some 
follow-up research, and how occultation data of COSMIC is relevant to Leith’s  idea. 

2 Climate signal detection 
To  what degree is the  warming of the  last  century caused by increasing  concentrations of anthro- 
pogenic greenhouse gases? Could the  warming possibly be  a  natural  fluctuation of the  climate 
system  instead?  In  order to answer these  questions,  Barnett  and Schlesinger (1987) suggested 
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that  the  spatial  pattern of the  warming  ought  to  distinguish  it  from  patterns of natural variabil- 
ity.  This  technique is known  generally as “fingerprinting,”  a  signal  having  a  unique  fingerprint 
which would  distinguish  it  from  other  suspected  signals.  At first the  fingerprinting technique 
was applied  as  a  simple  correlation  between  the  expected  signal  and  the data  to be used (c.f. 
Santer  et  al.  1995). Whenever  such  a  correlation is done,  it is always  expected that even in 
the absence of a  signal-to-be-detected that some “noise” leaks through.  This noise is the result 
of the  “natural  variability” of the  climate,  and hence  research into  the  problem of detecting  a 
signal  came  to  be answered in  terms of signal-to-noise ratios  (Hasselmann  1979).  Subsequently 
others  used  conventional  signal  processing  methods to show that a  kind of filter could  be de- 
vised which  would  minimize the  amount of noise that would “leak” into  a detection-a  kind of 
optimization of the  correlation technique (Bell 1982; Bell 1986; North  et  al.  1995).  Finally,  it 
was shown that several different signals can  be  detected  simultaneously  in  an  optimal  fashion 
(Hasselmann  1993).  Here we will call this  optimal  multi-pattern regression. 

The  main  premise  in  climate  signal  detection  studies is that  the  pattern of the  signal  as  it 
would appear  in  the  data  can  be  adequately described by a  GCM  (or  simpler  model).  Although 
the  initial  aim was to  detect  global  warming  and  attribute  it to an  enhanced greenhouse effect, in 
reality  any  “externally”  forced  signal  can  be  sought  in  signal  detection. For instance,  naturally 
occuring phenomena, such as  a change in  solar  insolation or suspended  ash  from  a  volcanic 
eruption,  can  be viewed as  external forcings. Even  phenomena  internal to a  climate  system  can 
be  treated  as  external forcings, such as  a sea-surface temperature  warming  associated with an 
El Niiio. 

2.1 Correlation  studies 
Assume we have  a data set d. This  data set  can  be  comprised of any atmospheric or oceanic 
variable of interest or any  combination  thereof,  such as coefficients of a  Fourier transform or of 
a  spherical  harmonic  expansion.  In  most  studies,  the data is grouped  according to  time, d(t). 
It is important  that  the  data be  relative  to  a  mean. We wish to find whether  a  signal is present 
in that  data. 

In all detection  studies, we assume that  the  pattern of the  signal s can  be modeled by a 
computer  to  within  a scaling factor a. Such a pattern is computed by subtracting  a  control  run 
of a  GCM  with  the desired external forcing absent  from  another  run of the  same  GCM  with  the 
external forcing present. The  data can  then  be modeled by 

d = a s + n ,  (1) 

and  in  the case of a  timeseries of data,  the  data is modeled by 

d(t) = a( t )  s + n(t). 

For  now  we will consider that s is a  strictly  spatial  pattern  and  thus  the  scaling  factor CY evolves 
in time.  In  both cases n represents  the noise of natural  climate  variability as it would appear 
in the  data.  It is assumed that a  mean  has  been  subtracted  from  the data.  In applying  the 
correlation,  the  best  estimate of the  signal  amplitude 6 is found  taking  the  inner  product of the 
data  with  the  signal  pattern: 

s . d(t) 
S 2  

6(t)  = - 
in which s2 = s . s .  The error  associated  with this  estimate of the  signal  amplitude is found 
by computing  the  root-mean-square difference of (6 - a )  assuming that  the  climate noise n is 
Gaussian.  The  error, ua, is given by 
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The  notation ( .  . . )  indicates an ensemble  average.  When  dealing  with  a  timeseries of data 
d(t), the  uncertainty is estimated by taking n as the  output  from  the  control  run  without  the 
external  forcing. The signal to noise ratio is then  simply  SNR = &;./a, and  the confidence level 
of detection is  erf ( S N R I d ) .  

The inner product  can  be defined in any of a variety of ways. The  data can  take  the  form of 
a vector of similar  (or even non-similar)  elements. For instance, it can  be  only temperatures, or 
a combination of temperatures  and  humidities.  The data can also take  the  form of a  functional 
wherein the inner  product becomes an  integral over volume.  In  any  case,  a  problem arises 
because  in this  method  the inner  product  does  not necessarily remain  invariant  under  coordinate 
transformation.  This  means  that different combinations of the  same  data  can yield very different 
results for the signal-to-noise ratio. In  practice, it leaves undetermined how one  should weight 
data in data-sparse regions: how does  one assign the  appropriate  amount of weight to surface 
temperature  measurements  in oceanic regions where there is very little  data? 

While  this  method can give a  fairly  robust estimate of the confidence level of detection for 
a single pronounced  signal, it is inappropriate should the signal be weak or other  strong signals 
be present. The former is a concern with  some  global  warming  detection work in the  literature 
(Santer  et  al. 1996; Tett  et  al. 1996). In  that work, the  authors assembled a  signal  shape 
using a  linear  combination of the effects of enhanced greenhouse warming,  cooling by sulfate 
aerosols, and  stratospheric cooling by ozone loss to best match  the  signal seen in the  data. Their 
results  are that they find the signal  with  a high level of confidence, but  in  a way this is circular 
reasoning. A better way to tackle the problem must be with  a  signal  detection  method which 
accounts for multiple  signals. 

2.2 Multi-pattern regression 
We can adapt  the correlation  method above to handle  the problem of multiple  signals. The 
model  becomes 

n 

d(t) = ai( t )  si + n(t) 
i=l 

It is assumed that there  are n signals  present, each with  its own signal pattern si and  amplitude 
ai which evolves in time. One  can  arrive at a best estimate of the signal amplitudes as a function 
of time by a least-X2 method. One defines x2 by 

n 

and minimize it by varying each ai at each time  interval.  The result is 

&(t)  = G-lp(t)  (7) 

in which the  elements of the  matrix G are given by Gij = si . sj and  the elements of the vector 
p(t) are p i ( t )  = si . d(t). The uncertainty is given as  an  uncertainty covariance matrix A ,  the 
elements of which are defined as Aij E (6ai 6aj) in which 6ai refers to a  departure  from  the 
best estimate of ai. The uncertainty covariance matrix is 

A = ~ - 1  T G - ~  (8) 

in which the  elements of T are zj = ( (s i  . n) ( s j  . n)). 
One  can check quickly that  the  amplitudes of the signals  can  be  determined  uniquely: the 

presence of one  signal  theoretically  cannot  be confused with  the presence of another.  This works 
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because  in  detecting  a particular signal,  one is effectively correlating  a part of that signal which 
is unique to  it alone and does  not  correlate  with  any of the  other  signals. In  reality, though,  it 
is impossible to  formulate  the signal patterns si perfectly, and,  through G-l ,  the  errors in their 
forms will cause confusion when distinguishing between signals. 

Even though  the difficulty of dealing  with  multiple  signals is resolved by this  method,  the 
problem of transformation invariance  remains. By taking different combinations of the  same 
data, one  can  arrive at  different conclusions. The only way to avoid this difficulty is to define 
a  metric which makes x 2  invariant  under  transformation.  This  metric will also  optimize  the 
detection, as we will  see in the  next section. 

Curiously, this  method of multi-pattern regression has not been applied  in  detecting  climate 
signals. For studies  such  as  those by Santer  et  al.  (1996),  it would only have required the 
computation of the 3-by-3 matrix G .  

2.3 Optimization 
North  et  al. (1995)  derived a set of coefficients to be used in correlation which minimizes 
the  amount of noise that would leak into  the  detection using the  theory of optimal filtering. 
The model is that of equation 1, and  the noise is assumed  Gaussian  with e,  and X, being 
the eigenvectors/eigenfunctions (empirical  orthogonal functions-EOFs) and eigenvalues of the 
noise covariance matrix (nnT). Their result is 

f3 = 7 - 2  p (9) 

where 

The  sum over p is arbitrary: any  subset of the  EOFs can  be chosen. The error in the  estimate 
of 6 is just 

f f c r - Y  ' 
2 - -2  

This technique resolves the problem of transformation  invariance:  the  result  only  depends 
on  the  type of data used and  not  on a particular  linear  combination of the  data. Also, the 
data  (and signal pattern  and  EOFs) can  be spatial-temporal  in  nature,  functional or vectorial 
in  form. For instance, if surface temperature  measurements  are used, the result for 6 would not 
depend  on how oceanic-based stations  are weighted in comparison to land-based stations in the 
composition of the  data d. 

This  optimization  can be generalized to  multi-pattern regression as shown in Hasselmann 
(1997).  In  this case, the best estimates for the signal  detection  amplitudes a are given by 

where the  elements of the  matrix I' and  the vector are 
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The uncertainty  covariance in the signals'  amplitudes is 

As in the  multi-pattern regression described  earlier, this  method also is able to perfectly  distin- 
guish between signals  with different patterns. As before, if the  patterns  are described  imper- 
fectly, this technique will confuse the presence of one signal for another.  This  last set of equa- 
tions is state-of-the-art in climate  signal  detection.  It is referred to  as  optimal  multi-pattern 
regression. 

The form  presented here can  be  read in either  functional  form  or vector form, depending 
on how the  inner  product is defined. Because ultimately  this problem is applied  numerically, 
it is most  appropriate  to  think of the  quantities d, si ,  and e,  as vectors. As such,  the noise 
covariance matrix  can  be  written  as 

and  optimal  multi-pattern regression can be found by using this noise covariance matrix as a 
metric in defining a new x' (Hasselmann  1997; Leroy 1999): 

x' = (d - S a ) T  N-' (d - S a ) .  (18) 

In this vector form,  the  i'th  column of the  matrix S is the  individual  pattern si. Minimizing x' 
by varying a gives 

& = (STN-lS)-l  STN-'d, (19) 

which is the  same result  as given by equations  13,  14,  and 15 in vector form.  In  practice,  the 
inverse of the noise covariance matrix is composed of a  subset of the EOFs by 

In  general,  those EOFs with  smaller  associated variances X, are  omitted because the  amount of 
information  available to  compute  the noise covariance matrix N does  not  justify  small  variance 
modes  (c.f. Hegerl et  al.  1997). (Notice that NN-l no longer reduces to  an  identity  matrix 
but  to x,  e,eIT.)  

2.4 Application of COSMIC data 
Most of the  global  warming  detection  studies  to  date have utilized  a N 120-year record of 
temperatures  from meteorological stations  distributed worldwide or a - 50-year record of ra- 
diosonde  soundings.  Naturally,  these  in  situ records do  not give satisfactory coverage over the 
oceans, so future  detection  studies using systems which obtain global coverage are  desireable. 
The one  space-based  system which has been utilized in global  warming  detection  studies is the 
Microwave Sounding.  Unit  (MSU)  on  the  U.S. series of TIROS Operational Vertical  Sounder 
(TOW) weather  satellites (Spencer and  Christy 1992a; Spencer  and  Christy 199213). The chan- 
nel 2  radiance  measured by  MSU  is representative of a bulk temperature of the  troposphere; 
however, this was called into question in situations of cloud cover (Hansen et  al.  1995). 

COSMIC will be  but  the first in a series of occultation  constellation  experiments  performed 
by different organizations  around  the world. As such, we view COSMIC as  the  benchmark from 
which other  constellations of GPS receivers can be used to detect  global  warming. 

Data from  COSMIC will be well-suited to  the  task of detecting  global  warming because it 
is highly sensitive to tropospheric  warming  and is subject to only very small  systematic errors. 
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Figure 1: A simulated  distribution of occultations by COSMIC for one  day.  Taken  from  Stevens 
(1998). 

Leroy (1997) pointed  out  that  GPS  occultation  can  directly  measure  the  geopotential heights of 
constant  pressure  surfaces  from  space. The measurement is dependent  only on the sounding of 
the  atmosphere above the layer of interest:  the refractivity, which is directly  proportional to den- 
sity  in  the  atmosphere above the  mid-troposphere, is integrated  from  the  top of the  atmosphere 
downward to give pressure as  a  function of absolute  height. By evaluating  the  geopotential 
energy as  a  function of the  absolute height (at  the horizontal  position of the  occultation) we 
deduce  geopotential  height  as  a  function of pressure  above the  mid-troposphere. (For  details on 
GPS occultation  retrieval, see Hajj  et  al. 1998;  Kursinski et  al. 1997.)  Thermodynamically,  the 
geopotential  height is a  natural  measure of the average temperature of the atmosphere below 
it: 

where h is geopotential  height, p is pressure, p ,  is the surface  pressure, R is the ideal  gas constant, 
T is temperature, p is the  mean molecular  mass, and go is a  standard value of gravitational 
acceleration. Thus, even though  the  measurement accuracy is independent of the  atmospheric 
state below the layer of interest,  the measured quantity is nonetheless  a  measure of the average 
temperature below that layer. 

GPS occultation of Earth's  atmosphere  can only directly observe geopotential  heights of 
constant pressure  surfaces  above the  mid-troposphere because  water  vapor  begins to contribute 
substantially  to  the  refractivity in the lower troposphere,  making  the  interpretation of refrac- 
tivity  in  terms of more  conventional  atmospheric parameters  ambiguous.  While  measuring  the 
geopotential  heights of pressure  surfaces  above the  mid-troposphere is probably sufficient for 
global  warming  detection,  it is valuable for reasons  mentioned  later to  retain  information on 
the lower atmosphere.  Thus, we propose that  the  parameter  to  be  retained for detection work 
and  other work mentioned  in following sections  should  be an integrated  refractivity f i ( h ) :  

N ( h ,  x) a 1 N(h ' ,  x) dh' 
00 

in which h is geopotential  height, N is refractivity, x is the horizontal  coordinate,  and  the con- 
stant a = 0.044024 Pa m-'. Above the  mid-troposphere, 3 is just  the  atmospheric pressure. 
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In the lower troposphere, f i  can  be  interpreted as the “weight” of refractivity  above  the  geopo- 
tential height h which is similar  to  the  column  amount of water  vapor  above that height. We 
propose that  the  units of I? be called “equivalent  Pascals.” 

We envision that  the  data  to be used in the  optimal filter will be the spherical  harmonic 
expansion coefficients of f i  at a few geopotential  heights as a  function of time.  The coefficients 
will be  denoted  as fi{;’)(h, t ) ,  in which 1 is the  spherical  harmonic  degree, m is the  order, e, s 
refer to  a sine or cosine coefficient, h is the  geopotential  height,  and t is the  time  period.  The 
actual field is represented  as 

f l l  

1=0 m=O 

in which 4 is longitude, B is latitude,  and 8, (e) is an associated  Legendre  polynomial  (Abramowitz 
and  Stegun  1972). Notice that fitrn = 0 when rn = 0. For an n-degree  expansion,  there  are 
( n  + 1)2 coefficients. If we wish to  retain  information which describes the  atmosphere  on conti- 
nental  scales,  a  degree-5  expansion is required, which  gives 36 coefficients. 

Climate  signal  detection requires that  data be  gridded  on  timescales at least  a  month in 
duration.  With  COSMIC, roughly 110 000 occultations will be collected each month, covering 
the  entire globe and  all times-of-day (sun-fixed longitudes).  Figure 1 shows  a simulated  distri- 
bution of soundings by COSMIC for one  day.  Call f i i(4i ,  0 i ,  ti ,  h )  the  data from  sounding i at 
longitude  and  latitude (4i, Oi) at  time ti during  a  month.  A  set of coefficients B!;:) is required 
to convert  these data  to  the set of spherical  harmonic coefficients: 

i 

fitm@) = f i i (h) .  
i 

We use I?i ( h )  as a  shorthand for f i i  (& , 0; , t i ,  h) .  There  are  a  variety of methods  to  determine 
the coefficients B;;:). Since the  spherical  harmonic coefficients are really intended  to  be  a 
measurement of the  atmospheric  mean over a month, we would prefer that  the conversion coef- 
ficients be  chosen so that  the differences between the  spherical  harmonic coefficients determined 
by equations 24 and 25 and  the true coefficients for the  month  are  as  small  as possible. The 
implication is that  an  optimal  method  should  be used to  determine  the conversion coefficients 
B;;:); however, the  extremely  large  number of data involved  makes the  determination of the 
conversion coefficients prohibitive.  The section on  Bayesian interpolation  in Leroy (1997) shows 
one alternative  method of deriving  such  conversion coefficients. 

The difference between the  calculated  spherical  harmonic coefficients and  the  true  spherical 
harmonic coefficients which  describe  the  mean  state of the  atmosphere for the  month is called 
“sampling”  error.  This  error arises because the  data does  not  completely  sample  the  atmosphere 
in time  and  space.  In between the  data locations,  spatially  and  temporally,  there  are  maxima 
and  minima in the  integrated  refractivity field  which are missed by the  occultation  data. Albeit 
the  variability which contributes  to  the  error  has  short  time  and  spatial  scales,  this  variability is 
associated  with  synoptical scale weather systems. Li and  North (1998)  shows how to  estimate 
the  sampling  error for a  conversion filter such as that given  by equations 24 and 25. The result 
is an  error  covariance matrix in the  elements fi{;’)(h), which  should  be  added to  the  climate 
variability  covariance  matrix N for climate  signal  detection.  This will alter  the  EOFs, generally 
increasing  the eigenvalues X,. An estimate of the  sampling  error for data  distributed like that 
expected  from  COSMIC  has  not yet been done. 

In addition  to noise due  to  natural  climate  variability  and  sampling  error, one  must also 
consider systematic  error.  This  error arises because  no  observing  system  measures  atmospheric 
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variables  perfectly.  In this case,  a  vertical profile of refractivity  deduced  from an occultation, 
computed by an Abel transform, does  not  recreate the  actual  atmospheric profile precisely 
primarily  because  the  horizontal resolution of the  occultation,  about 200 km, is too large to 
capture  spatial water  vapor  variability  in the lower troposphere.  While  this  particular  error will 
average to zero with 110 000 monthly  occultations,  there  are  others which are  not  expected to 
average out. These  are  systematic.  The  dominant  contributor  to  the  systematic  error is caused 
by the ionosphere: solar-cycle variability  induces  variability  in  ionospheric  activity which in 
turn induces  error  in  refractivity  retrievals, especially in the  stratosphere.  This  error  translates 
to a 100-m error in geopotential  height at  40-km altitude falling  exponentially to a 1-m error in 
the  mid-troposphere.  While  some of this error  should cancel by averaging over a month, some 
will not. Once this  error is propagated  into  the values of fi/;”(h), its  error covariance matrix 
should  be  added to  the  climate variability covariance matrix N just as the  sampling error  is. 
See Kursinski et  al. (1997) for a discussion of errors  related to  GPS occultation. 

2.5 Work to date 
Using correlation  and fingerprinting  techniques, recent studies have shown that surface  tempera- 
ture increase over the  past  century can  be attributed to anthropogenic  greenhouse  gas increases 
with  a confidence level of M 95% (Hegerl et  al. 1997 and references therein).  This  must be 
interpreted as there being  a 5% chance that a natural  fluctuation of the  climate  can fully ac- 
count for the increase of 0.6 K seen over the  past century. None of these  studies  considered that 
while a 0.6 K  fluctuation of the global average surface temperature is rare,  it is even rarer that 
this increase occur steadily-almost monotonical1y”over the course of 100 years. Even more 
recent studies  consider the  temporal  structure of the signal as well, and confidence levels have 
increased to 99% and higher (Tett  et  al. 1999; Wigley et  al.  1998). In short,  no  GCM  has ever 
shown a  global  scale  warming of 0.6 K occuring on a 100-year timescale in all the millenia of 
control  runs, a  point  originally  made by Stouffer et  al.  (1994). 

Even though greenhouse-gas forcing seems to be required to explain the rise in surface 
temperature, nevertheless  there  are  still  unexplained  features in the surface temperature record. 
The warming  seems to occur in the  time intervals 1910-1940 and 1970-present with  little change 
in between. See figure 2, the  data of which is described in Jones (1994) and  Parker  et  al.  (1995). 
When  all data is included  in optimal  multi-pattern regression, the  minimum x’ far exceeds the 
number of degrees of freedom,  meaning that  the fit is unsatisfactory. That is,  there  are  still 
unexplained  features  in the  temporal  pattern of surface temperature over the  last century.  To 
this  day  this  pattern of warming  intervals  and  steady  intervals  remains  unexplained  although 
some of suggested that variations  in  solar  forcing  might  be  responsible. 

Leroy (1999) and Stevens  (1998) have performed optimal filtering studies which probe how 
global  warming  detection will be  impacted by COSMIC. Even though  no data  has been obtained 
yet, these  types of studies  can  still attempt  to determine how warm the  climate  must become 
before we can  unmistakably  attribute  that warming to increased concentrations of greenhouse 
gases. Leroy (1999) estimated  that a  1-sigma  detection time of detection is about 10 years, a 
much shorter  time  than if only  surface temperatures  are used. This result is most sensitive to 
the overall pattern of tropospheric  warming  and  stratospheric  cooling.  Philosophically,  though, 
a cooling stratosphere is not evidence that  the troposphere is warming  because of increased 
greenhouse  gas  concentrations.  Stevens  (1998)  appropriately  separated the  tropospheric  and 
the  stratospheric  patterns in determining how much each contributes to global  warming  detec- 
tion. He found that using the thickness of the  troposphere  (geopotential height of the N 100-hPa 
surface) adds very little  information over surface temperature  measurements.  This is not sur- 
prising,  primarily  because it is expected that  temperature  fluctuations  are  strongly coupled 
throughout  the  troposphere. 

Both Leroy (1999)  and  Stevens (1998) have demonstrated a  commonly  occuring  problem in 
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Figure 2: The global average surface temperature  from 1856 through 
1998 as  distributed by the  IPCC.  The  data is available on the  internet: 
http://www.cru.uea.ac.uk/cru/data/temperat.~t~. 

optimal  detection of climate  signals. It was mentioned previously that any  subset of EOFs  and 
their eigenvalues can  be used in  optimal  detection. For example, Leroy (1999) estimated  the 
signal pattern f i ( h )  for global  warming  in  the  Indian Ocean region (c.f. figure 3) .  In figure 
4 he shows the  spectrum of eigenvalues X, and  the  square-projections (e ,  . s ) ~ .  Notice that 
while the  spectrum of X, cascades  strongly,  the  square-projections  do  not. By inspection of 
equation  10, it seems that a  nearly  infinite signal-to-noise ratio  can  be  obtained for detection. 
This  should  not  be  true.  First,  as mentioned previously, there is not  enough  informati.on in 
the  control  run to justify  the smallest eigenvalues X,. Second, the higher  order EOFs  tend to 
represent the finer,  smaller-scale  features of the signal pattern,  details  in which one cannot have 
much confidence. Therefore,  a  subjective  truncation procedure must  be  undertaken wherein 
some  modes are  retained  and  the  others  eliminated. 

Different researchers  take different approaches to  this  truncation  (c.f. Leroy 1999; Hegerl 
et al. 1996; Hegerl et  al. 1997;  North  and  Stevens  1998;  Stevens  1998, etc.).  Perhaps  the most 
satisfying method is to use only  those  modes which pass  a  test of statistical significance before 
being used to parameterize  the  climate  natural variability (Tett et al.  1999). 

Most of the  preparatory work required to use COSMIC  occultation data for signal  detection 
is in estimating  the  natural  climate variability.  Stevens  (1998) uses CCM3  to  estimate  the vari- 
ability of geopotential  heights  in  the  tropics, which is directly  related to integrated  refractivity 
above the  mid-troposphere.  Other models  should be used as well, for the sake of comparison. 
In  addition,  additional  information  may be obtained  from  tracking  the  annual cycle. The  EOFs 
in the  annual cycle are  “cyclostationary”  modes  (Kim  et  al.  1996). 

In  passing, it is worth  noting that  the fingerprinting  approach to detecting  climate  change, 
premised  on an  approximate  linearity of the  climate  system,  might prove outdated should the 
view of Corti et al. (1999)  be  affirmed. They  surmise  that  instead of the  chaotic  climate  system 
react  linearly to  an external  forcing that instead it visits its preferred states  (attractors)  with 
steadily  changing  frequency. It is not  clear how fingerprinting or regression can  be  applied 
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Figure 3: The  signal  pattern of greenhouse-gas  induced  warming in  integrated  refractivity vs. 
geopotential  height. It is the difference in integrated  refractivity profiles computed with 396 
ppmv  carbon dioxide and 330 ppmv using  a  one-dimensional  radiative-convective  model. 

should  such  a  mechanism  be at work. 

3 Detection as model testing 
While  climate  signal  detection was originally motivated by the need to  detect  and  attribute 
climate  change  to  human  activity,  some  scientists  are now using this  technique  to  test  climate 
models  in several different ways. For example, Forest et  al. (1997)  shows how optimal signal 
detection  can  be  used  to  estimate  parameters of simplistic  climate  models.  This  technique 
can  be especially appropriate for forcings on  shorter timescales than  global  warming, such as 
local oceanic warmings, volcanic eruptions,  etc. Also, when signal  detection  as  presented in the 
previous section is formulated  in Bayesian terms,  it  can  be shown that by itself it  tests  climate 
models. 

3.1 Bayesian priors  and  climate  model  predictions 
In  statistical  language,  optimal  detection is finding the  conditional  probability of signal  ampli- 
tudes given  a data  set.  This is written  as P(a1d) .  It is Gaussian in a with  a  centroid at Q 
and  an  uncertainty covariance matrix of A. In statistics  this is written  as a N N(&,  A ) ,  which 
means 

where R ,  signals  are  being  detected  (and is the  dimension of a)  and I . . . I is a  determinant. 
Recall that Q is computed using the  data d (c.f.  equation 19). Implicit in finding this  probability 
distribution for a is that  the  shapes of the  signals, as prescribed by S (or si), are known better 
a  priori  than  the overall amplitudes of the  signals a ,  since the  signal  amplitudes  are  treated 
as unknowns.  In  fact,  subjectively we probably  have  a  better  idea of the overall amplitudes of 
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Figure 4: Eigenvalues Xk and  squared-projections 4; = ( e k  . s ) ~  for detecting  the signal  in 
figure 3 when  all  months-of-the-year  are  considered. The eigenvalues are represented by the 
monotonically  decreasing  solid  line,  and  the  squared-projections  are  represented by the line 
connecting  the  square  points.  The  variability was computed using the first 100 years  from the 
300-yr control  run of the  Climate  System Model (CSM) of the  National  Center for Atmospheric 
Research (NCAR) of the U.S. 
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signals than we do of their  spatial scales at  high resolution.  Therefore, it is only appropriate 
that we account for our  a  priori knowledge of signal  amplitudes. 

In Bayesian statistics,  equation 26 is only half of the problem of inference: the  other half 
is the  “prior” in the signal amplitudes, since the posterior is a  probability  density  in  the  signal 
amplitudes.  The prior is a  probability  distribution  in signal amplitudes which depends on the 
theory, or model, that is used to establish the  probability  distribution.  It is written as p ( a l M )  in 
which M denotes that model M is used to determine  the prior  probability  distribution. Bayes’s 
theorem  states  that 

P(ald, M )  0: P(dla) p(alM) (27) 
wherein P ( a l d ,  M )  is the “posterior”  (posterior  probability distribution of a) ,  P ( d l a )  is the 
“likelihood”  (likelihood of the  data),  and p ( a l M )  is the “prior” (a priori knowledge of a given 
model M ) .  The normalization  constant for the posterior P(dJM) is given by integrating over 

P(d1M) = 1 P ( d l a )  p ( a l M )  d a  (28) 

The Bayesian likelihood function P ( d l a )  is directly  proportional to  the posterior  probability 
P ( a l d )  given by more  traditional  statistics in equation 26. 

It is the prior p ( a l M )  which is uniquely  Bayesian. It  must be interpreted  as a prior expec- 
tation of what  the  signal  amplitudes should  be before any data is considered, effectively making 
it subjective.  Those  expectations derive from  the best  theories of the  climate  system available: 
GCMs. 

At this  point  it is worth  noting how global  warming  predictions  are  currently  done. Usually, 
one works with  a  single  model M .  First, a  long  control run is done  with that model to establish 
how the  climate  system would behave  without  any  external  forcing.  A  climatic  mean state is 
determined.  Then  the model is run  with  a  particular  external  forcing  imposed. The difference 
between the first run  and  the second run is the signal.  Usually  only the overall spatio-temporal 
form of the signal is retained, allowing a rescaling of the overall amplitude  (as was done in the 
first part of this  paper). In  reality, we also have a prediction for the signal amplitude as well. 

In  order to establish  a  proper  prior  the  model also needs to assign uncertainties to  its pre- 
dicted a. Most work assumes that  the uncertainty derives from  the  climate  variability  as gen- 
erated by the  model; however, the  true  uncertainty derives  from the  uncertainties of the model. 
For instance,  whereas  the  equations of motion  incorporated  into  the  atmospheric  and oceanic 
models  are  precise,  some  error is incurred by implementing  them in finite difference form. Most 
important,  though,  are  the  uncertainties associated  with the  parameters of the  model, those 
parameters being necessary to describe processes in  the ocean-atmosphere-biosphere-cryosphere 
system which occur  on  sub-gridscales.  Examples of such  parameters would be associated  with 
schemes of moist  convection,  cloud formation/properties, surface run-off, etc. The uncertainties 
in  these parameters  are  subjective,  but  they can  be  estimated  reasonably.  Preferably,  then,  the 
uncertainty in the  climate signal  prediction  should  be  estimated by running  the  model,  with 
the  external forcing  included, several times, each time with different but reasonable values of 
internal  parameters.  This is computationally  extremely  expensive,  but  alternative  approaches 
to such  a  calculation have been proposed (Webster and Sokolov 1997). 

Because the likelihood  function is generally much more  sharply  peaked than  the prior (oth- 
erwise there was no  reason to  obtain  the  data  to begin with),  the prior will have little effect on 
the posterior  probably distribution. If more than one  model is used to generate  a  prior, however, 
the  prior becomes very useful in  a second level of inference. If a  relative  prior  probability  for 
model j is p ( M j ) ,  then  the posterior  relative  probability of that model  in  light of the  data d is 

a: 

P(Mj Id): 

P(Mj  Id) P(dlMj) P ( 4 )  (29) 
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wherein the  function P(d lMj )  is evaluated  using  equation 28. If we assume that  the prior 
distribution in a-a model’s  prediction-is a - N ( a p ,  Ap), then  the  conditional  probability 
of the  data on  the  model is 

where the  “accuracy” A,  the  posterior  most  probable  signal  amplitudes a,, and  the posterior 
amplitude  uncertainty covariance matrix  are given  by 

A = (d - Sa, )TN-’(d  - S a , )  + (a ,  - a p ) T A i ’ ( a ,  - ap) (31) 

a, = (A-’ + Ai’)-’  ( A ” &  + Ai's,) (32) 

A, = (A”’ + Ai1)-’ .  (33) 

, Throughout  these  equations  the  subscript p refers to  the prior probability  distribution,  the 
subscript m refers to  the posterior  probability  distribution,  and  the  tilde refers to  the  data 
likelihood function.  The accuracy A given by equation  31  can be thought of as  the accuracy of 
the  prediction.  The  first  term  on  the  right is the  disagreement  between  the data  and  the most 
likely fit described by a,, and  the second term on the  right is the  disagreement between the 
outcome  and  the  prior  prediction.  The higher the accuracy A the less accurate  the  result. 

The  conditional  probability of the  data on  the model gives a  relative  probability of one  model 
to  another  model.  Equation 28 indicates that  the less accurate  the  result,  the less relatively 
probable  the  model is in  light of the  data.  This is obvious  from  experience. What is new 
with  a  Bayesian formulation is that  the more precise the  prediction  (re:  the  smaller  the prior 
uncertainty covariance matrix IApl) the  more relatively probable  the  model is in  light of the 
data. A model is more useful scientifically if it  can give more precise predictions  than  another 
model  while maintaining good  accuracy. What is understood  intuitively  about precision is made 
quantitative  with Bayesian inference. In this way signal  detection  can  be  shown  to  be  a special 
case of model  testing (Leroy  1998). 

3.2 Testing models by detecting signals with COSMIC 
While  detecting  warming  associated with  increased  greenhouse-gases has been  discussed at 
length,  the  duration of the  resulting  climate change  makes it  unsuitable for use in testing 
and  improving  GCMs.  There  are  other  external forcings which are  better  suited,  e.g.  a sea- 
surface temperature  warming  associated  with  an El-Nifio  even or a  volcanic eruption. For an 
El  Niiio forcing, we expect the  dominant model  response to  be  a  change  in  the  global  pattern 
of precipitation  and  in  patterns of tropical  convection. The relevant model  parameterizations 
would be  those  associated  with  surface-atmosphere  interaction,  with  moist  convection,  and  with 
cloud formation  and  evolution. For volcanic  forcing, we expect the  dominant  model response 
to be  regional  cooling of the  troposphere.  The  pattern of such  a  cooling  bears upon  radiative 
transfer  parameterizations  and  circulation/transpose  in  the  stratosphere. 

Differences between  modeled and observed  responses to  external forcings will not only  be in 
the  amplitude  but also in  the overall pattern. Since the  pattern is strictly defined in  fingerprint- 
ing,  it seems that  the  method given above  may not  be well-suited to improving  climate  models. 
The only  improvement  to  a  model will be  an  adjustment of its  parameters,  something  that is 
best  done  with  a  climate  adjoint.  Such  an  adjoint  would  be  similar to those  used  in  weather 
forecasting  (c.f.  Hall  and  Cacuci 1982 and Errico  1997). We expect the  prime difference between 
a  climate  adjoint  and  a weather  adjoint to be that  the  parameters of the  model  are  adjusted 
instead of the  initial  atmospheric  state.  The development of a  climate  adjoint is a very  new 
field and  everything  remains  to  be  done. 
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4 Testing  models  using  second-moment statistics 
Climate signal  detection  clearly relies heavily on  climate  models:  first  (and  foremost) to pre- 
scribe the  natural  variability of the  climate in the variables of interest,  and also to specify the 
patterns of the forced signals for which we are  searching. In order to get  a sense of  how reliably 
a climate  model  can describe the  climate variability, it is necessary to use another  method  to 
test  the  climate  model. Leith (1975) proposed a method which is ideally  suited to  this  task. 
His idea is based  on the  application of the  fluctuation-dissipation  theorem of thermodynamics 
to  the ocean-atmosphere  system. 

The  outcome of his  note is that  the quality of a  model is best  tested by comparing second- 
moment  statistics of its variables. Most climate model  validation efforts involve a  comparison of 
model averages and observed means.  In  the event of a  mismatch it is simple  enough to  tune  the 
model to  match model  output  and observations  regardless of the physical  reality of the  climate 
system. By paying attention  to second-moment statistics of climate  variables, though, one is 
more likely to realistically simulate  the  actual physics of the  climate  system, even if long-term 
averages  may  not necessarily match reality. Any mismatch of averages then represents the 
absence of a  physical process in the model rather  than  an  implementation of incorrect physics. 
Hence, we regard  a  model which is validated by a  comparison of second-moment statistics  as a 
more useful tool for prediction than one whose first-order moments  are  compared. 

We first  describe  Leith’s  note  qualitatively. Then we describe the work of some authors who 
have used this  idea  to  test  climate  models, including  some work which uses second-moment 
statistics of observed field to  estimate  internal feedbacks in the  climate  system. 

4.1 Leith’s note 
Leith  (1975)  sought to show that there is a link between the second-order moments of a  climate 
system  and  its  sensitivity to external  forcings. He applied the  fluctuation  dissipation  theorem, 
even though  the  theorem holds only for Liouville sytems. The climate  system is not Liouville, 
but  subsequent work demonstrated  that  the  theorem  remains  applicable  to  the  climate  system 
to a  large  degree (North, Bell,  and  Hardin  1993). An heuristic  explanation of Leith’s work is 
presented  here. 

Consider the  climate  system  as characterized by a  large  set of variables u,. We wish to find 
how those  variables  respond to  an external  forcing of one of those  variables. The response as a 
function of time  can be written in terms of a Green’s function: 

in which bu, is the response of variable urn to an  external  forcing 6 f p  in variable up and g,p(T) 
is the response function. 

Again,  assume the  system is Liouville (energy-conserving) with  its variables  fluctuating 
randomly, each fluctuation of a  mode  leading to responses in all the  other modes  through weak 
interactions. All of the modes  are in a  type of statistical  equilibrium, like an  equipartition 
of energy ( ~ B T )  in  thermodynamics.  One  can  then  think of a flutuation b fp  leading to a 
fluctuation Su, through a weak coupling,  and  one  finds that 

in which buh is the  amplitude of the  fluctuation of a  mode y, each mode being  a  linear combi- 
nation of the variables u, and is orthogonal to every other  mode. The  denominator of equation 
35 can  be  thought of as a  forcing by the  random  fluctuations of model u and  the  numerator  as 
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Figure 5: The  monthly  correlation of the specific humidity at  the surface  with  upper  air specific 
humidity over the  Sahara  desert (filled squares)  and over the  Indian Ocean  (open  squares). 
Computed  from  the  output of the 300-year control of the  CCM3. 

the response to  that forcing.  When  rewritten in terms of the variables of the  system,  equation 
35 becomes 

g ( T )  = U(7) u-l(o) (36) 

in which U(T) is the time-lagged covariance matrix of the  atmospheric variables. 
Because the time-lagged covariances can  be  computed  from  observations, it seems that  the 

climate  sensitivity  can be derived  from  observations  alone.  Nevertheless, it is impractical to 
compute  the  climate  sensitivity  this way because of the  number of variables  involved.  On the 
other  hand, it is clear that  it is the second-moments of the  climate  system which determine  its 
sensitivity,  and  thus  it is advised that  the second-order moments of a  predictive  model agree 
well with  reality. 

4.2 Linear  models  as a  means of testing GCMs 
Recently,  Polyak et  al.  (Polyak 1996;  Polyak and  North 1997a;  Polyak and  North 1997b) have 
described  a method which is linearized version of the Leith  problem.  They  write  a  linear  model of 
the  natural  variability of the zonally averaged surface temperature field Ti for different latitude 
belts i. : 
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One  can find the linear coefficients Aij by optimal  statistical  methods for both  data  and control 
runs of models and  compare. Since the records  are short one  must assess statistical significance 
of the differences. It is reckoned that  the values of the coefficients are very important since in 
principal  they  are  the  basis for feedbacks in  the  system if it is perturbed by time independent 
(static)  external influences. Such a static  perturbation  (e.g.,  doubling  COa) is a standard 
measure of the  sensitivity of a  model. For example,  let  there  be an external  perturbation  AQi, 
then 

j 

The coefficients are  estimated  from data  streams from data and  generated by a GCM.  They 
are  sensitively  dependent  upon the lagged space-time covariances in  these two streams. If the 
model  does  not  get  these coefficients right it is not likely to get the  sensitivity  right. Hence, we 
feel that  getting these coefficients right is a necessary condition for model success in simulating 
climate change.  While the cited  papers  open  the  door to  studying  this  problem, much has  to 
be  done to improve our  understanding of the process. First of all the  studies  mentioned  do not 
take  into account the  fact signals  are  contained  in the  data  stream. These  induce  correlation 
structure  that is not in the unforced control  runs.  One must  either  add  the signals to  the model 
runs  or remove some  approximation to them  from  the  data  stream.  This is work yet to be  done. 

Because of the connection between model  sensitivity  and the lagged space-time statistics, 
one would like to compare  such second moment  statistics for fields other  than  the surface 
temperature. Most observations  taken away from  the surface  are  not very reliable  because of 
poor  sampling  and  the  many biases associated  with  such  measurements. The  data expected to 
come  from the  COSMIC  program should  provide a unique  source of second moment  data for 
comparison  with  GCM output.  This will pose a dramatic new data set  with which to confront 
the  GCM  community.  It will be  a data set which bears  directly on the  ability of the GCM to 
respond to external  perturbations. 

While  any  observeable  related to the  climate  system  can be used in second-moment  statistics 
studies,  some data is better  at revealing specific processes than  others.  Occultations using 
COSMIC we anticipate  to reveal a  great  deal  about processes related to  the water  vapor cycle 
in the lower troposphere.  Occultation by GNSS is sensitive to lower tropospheric  water  vapor 
like no  other  remote sensing platform. 

A  typical  second-moment of interest would be  the correlation between refractivity at  the 
surface  vs.  refractivity at  altitude.  It is hypothesized by Lindzen (1995) (and references therein) 
that humidity  in  the  upper  troposphere is anticorrelated  with  humidity in the lower troposphere, 
making a negative feedback to increased shortwave  forcing at  the surface.  A  second-moment 
statistic  related to such a process would be  the correlation between surface specific humidity 
and  upper  tropospheric  humidity.  In figure 5 we show such a correlation for two regions as 
exists in the 300-year control  run of CCM3 (Boville and  Gent  1998).  While specific humidity is 
not  directly  retrievable  from  atmospheric  refractivity,  its  contribution to refractivity  variance in 
the lower troposphere is about 100 times  larger than  the  contribution to  refractivity of the  dry 
air.  Thus, vertical  correlations of refractivity  from  occultation data should  inform  us  mostly on 
water  vapor physics and  transport  in  GCMs. 

Another  important second-moment would be  spatial correlation of upper  tropospheric  and 
stratospheric  integrated  refractivities in polar  latitudes.  The  arctic oscillation  (Thompson  and 
Wallace 1998;  Shindell et  al. 1999) ought to be easily detected in such  hemisphere-wide correla- 
tions.  Furthermore, COSMIC offers the possibility of finding  a  similar  oscillation in the  southern 
hemisphere where upper  air  sounding is much less frequent than  in  the  northern hemisphere. 
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